

Toolbox for Severe Coronary Calcification: Device, Indication and Tips

I. Sheiban

Director of Interventional Cardyology Pederzoli Hospital Peschiera del Garda (Verona)/Italy

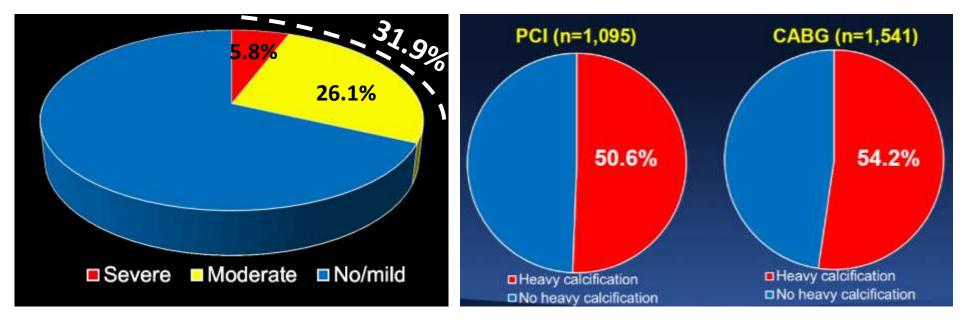
E-mail : isheiban@gmail.com

Key issues

- Frequency of coronary calcified lesions
- Clinical Implications
- Detection of coronary calcifications
- Tools for the treatment of calcified lesion

Frequency of angio core lab moderate-severe calcification in 13 DES studies

RAVEL	23.3% (27/116)
SIRIUS	17.1% (91/531)
E-SIRIUS	16.1% (28/174)
C-SIRIUS	12.0% (6/50)
TAXUS IV	18.3% (121/660)
TAXUS V	32.5% (185/570)
TAXUS VI	29.7% (65/219)
ENDEAVOR II	23.7% (140/590)
ENDEAVOR III	17.9% (78/436)
ENDEAVOR IV	33.2% (513/1546)
SPIRIT II	31.4% (91/290)
SPIRIT III	27.8% (277/997)
COMPARE	38.5% (693/1799)


Pooled

29.0% (2,315/7,978

Frequency of Mod/Sev Calcification in NSTE-ACS and STEMI PCI population: Core lab analysis from ACUITY and HORIZONS-AMI

Frequency of "heavy" calcification in the SYNTAX trial: Randomized + Registry

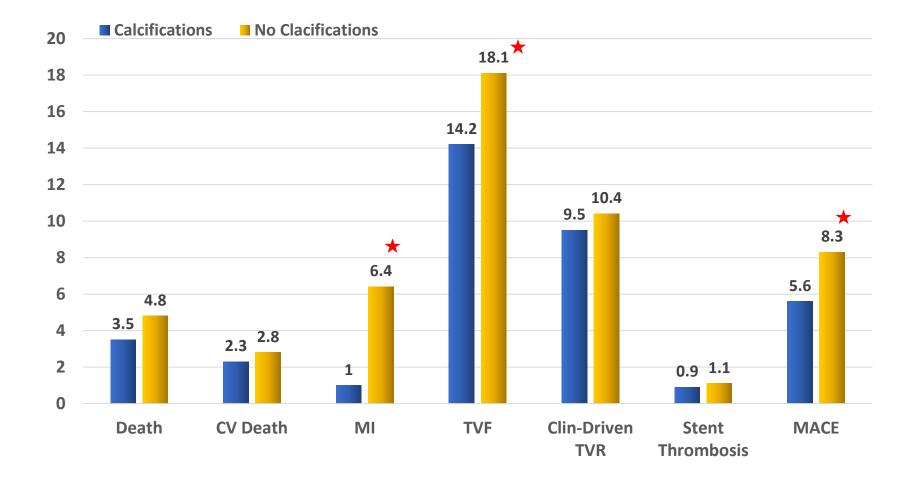
Généreux, P. et al. J Am Coll Cardiol 2014 13;63 (18):1845-54

Farooq et al. J Am Coll Cardiol 2013;61:282–94

Clinical Implications

Coronary calcification results in:

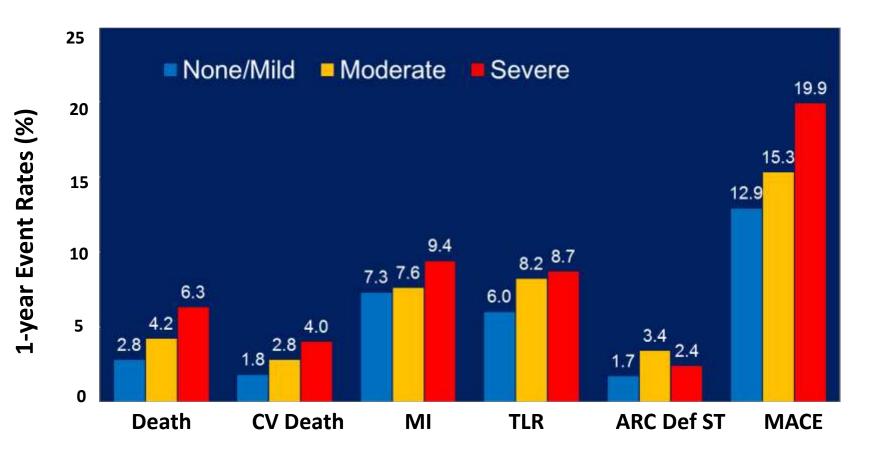
- Impaired stent delivery, decreased stent expansion, increased malapposition and stent asymmetry
- Increased procedural complications (edge dissections and perforations)
- Increased rates of stent thrombosis and restenosis



IVUS stent expansion is the strongest predictor of early ST and restenosis after BMS or DES

	Stent Thrombosis	Restenosis
BMS	• Cheneau et al. Circulation 2003;108:43-7	 Kasaoka et al. J Am Coll Cardiol 1998;32:1630-5 Castagna et al. AHJ 2001;142:970-4 de Feyter et al. Circulation 1999;100:1777-83 Sonoda et al. J Am Coll Cardiol 2004;43:1959-63 Morino et al. Am J Cardiol 2001;88:301-3 Ziada et al. Am Heart J 2001;141:823-31 Doi et al. JACC Cardiovasc Interv. 2009;2:1269-75
DES	 Fujii et al. J Am Coll Cardiol 2005;45:995-8) Okabe et al., Am J Cardiol. 2007;100:615-20 Liu et al. JACC Cardiovasc Interv. 2009;2:428-34 Choi et al. Circulation Cardiovasc Interv. 20011;4:239-47 	 Sonoda et al. J Am Coll Cardiol 2004;43:1959-63 Hong et al. Eur Heart J 2006;27:1305-10 Doi et al JACC Cardiovasc Interv. 2009;2:1269-75 Fujii et al. Circulation 2004;109:1085-1088 Hahn et al. J Am Coll Cardiol 2009;54:110-7 Kang et al. Circ Cardiovasc Interv 2011;4:9-14 Kang et al. Circ Cardiovasc Interv 2011;4:562-9 Choi et al. Am J Cardiol 2012;109:455-60 Song et al. Catheter Cardiovasc Interv, in press

ADAPT-DES (N=8,582): Calcification and 2-Year Events

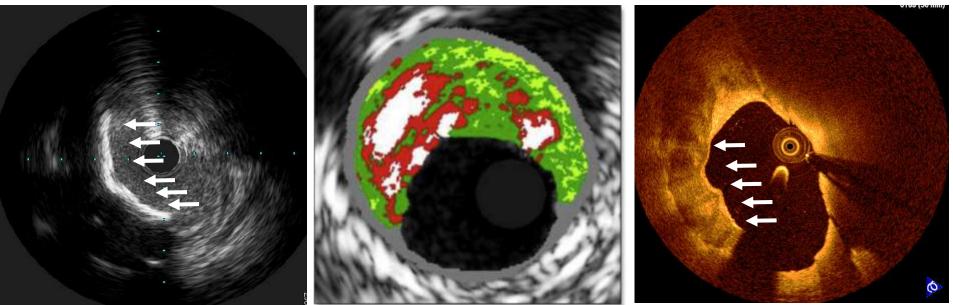


Généreux, P et al. Int. J. Cardiol 2016

ACUITY/HORIZONS-AMI: Implications of Calcified Lesions on PCI in ACS

(1-year outcomes; n=6,855 pts)

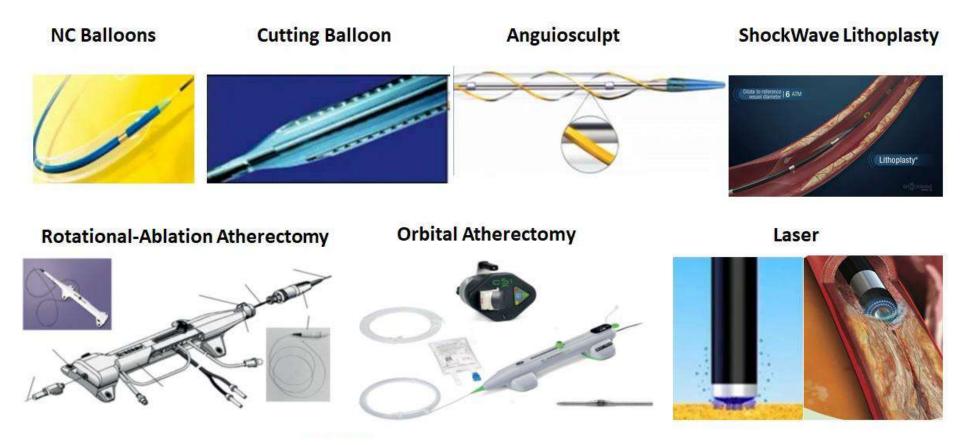
Généreux P et al. J Am Coll Cardiol 2014 13;63:1845-54


Detection of Coronary Calcifications

	Coronary Angiography	СТ	IVUS	RF-IVUS (IVUS-VH)	OCT
IMAGING MODALITIES			Superficial calcium detection	Color coded tissue composition	* Control of calcium area is possible
Detection of coronary artery calcium	+	+++	+++	+++	++++
Localization of coronary artery calcium	+	+++	+++	+++	++++
Quantification of coronary artery calcium	+	+++	++	+++	++++
	•	5		@	

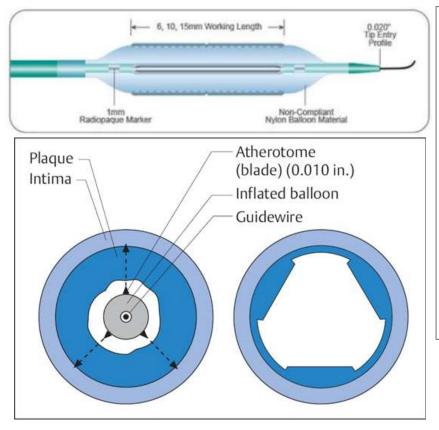
GS Minz ; JACC Cardiovasc Imaging 2015;8:461-471

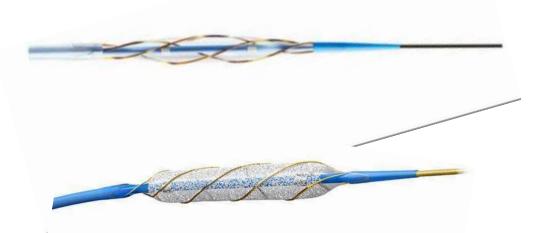
IVUS and OCT for Calcification detection


IVUS does not penetrate into calcium : Cannot measure thickness or mass, only arc and length IVUS-VH (Virtual Histology) IVUS technology incorporating radiofrequency data to assess plaque composition

- Fibrous tissue
- Fibrofatty tissue
- Necrotic core
- Calcium

OCT penetrates calcium and is able to assess calcium thickness and area/volume as well as arc


Tools for the management of coronary calcified lesions



Cutting Balloon

4 blades (~0.25 mm in height), mounted longitudinally on the surface of a non-compliant balloon. During dilation, Cutting Balloon creates three or four endovascular radial incisions through the fibrocalcific tissue (controlled dissection), thus allowing further expansion with conventional balloons. 23rd cardiovascular summit

Precision

Edges lock in

PROPER PLACEMENT

- Rectangular scoring edges lock the device in place
- Minimal device slippage or "watermelon seeding," even in ISR¹

Predictable Power

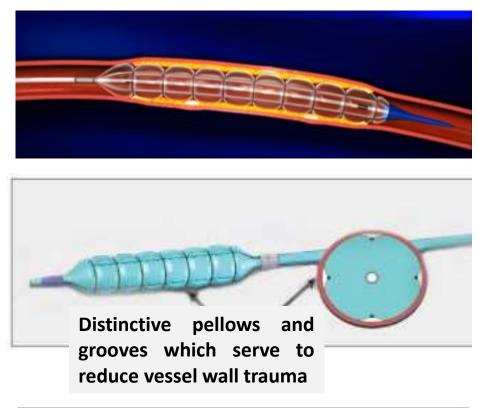
~15-25x scoring force

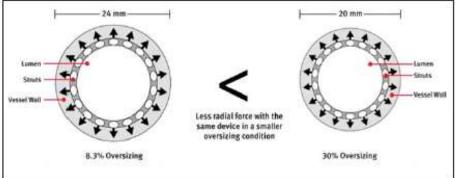
ENHANCED MECHANICAL ADVANTAGE

- The leading edges are designed to drive outward expansion with up to ~15-25 times the force of conventional balloons²
- Helical nitinol scoring element creates a large initial luminal expansion for stent implantation³

AngioSculpt

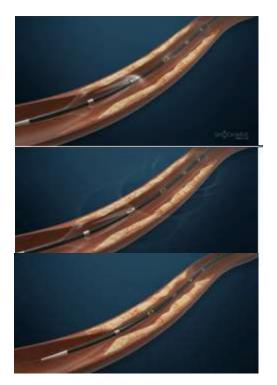
- •Consists of a semi-compliant nylon balloon, surrounded by three external nitinol spiral scoring wires
- •This device is more flexible and deliverable than the cutting balloon (the crossing profile of the smallest device is 0.036").
- •Mechanism of action similar to Cutting balloon
- •Preferentially utilised in preparing *de novo* lesions and ostial lesions


Safety


~1x force post scoring

PREDICTABLE RESULTS

- Post scoring, outward forces are designed to be equivalent to that of a conventional balloon
- Low dissection rate of 13.6%¹

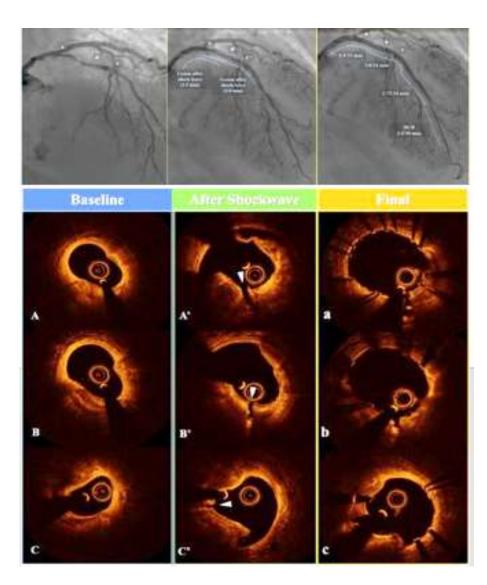


Chocolate Balloon

- A novel balloon catheter with a mounted nitinol constraining structure specifically designed for uniform, controlled inflation and rapid deflation resulting in atraumatic dilatation
- The nitinol-constraining structure of the Chocolate creates balloon segments or "pillows" that make contact with the vessel and functions minimize local forces. The to "grooves" facilitate plaque modification without cutting . The distinctive pillows and grooves serve to minimize vessel trauma, reduce the rate of dissection

Shockwave Balloon

Lesion modification using lithotripsy in a balloon


Tissue-selective:

- Hard on hard tissue, Soft on soft tissue
- Lithotripsy waves travel outside balloon
- Designed to disrupt both superficial, deep calcium

Designed to normalize vessel wall compliance prior to controlled, low pressure dilatation

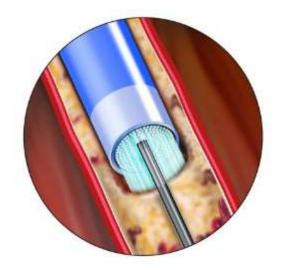
- Effective lesion expansion with minimized impact to healthy tissue
- "Front-line" balloon-based Rapid Exchange .014 platform

Lithoplasty with Shockwave Balloon

- Initial clinical experience
- Promising data in small studies

Non Atherectomy Devices (Cutting and scoring balloons)

Advantages :


- Easy use
- Relatively less complications
- Work on conventional wires

Disadvanteges :

- Often difficult to reach target lesion (High profile)
- Reduced efficacy in moderate / severe calcification

Main indications : lesion preparation in mild calcification & de novo and ostial lesions

Excimer Laser Atherectomy

Tissue ablation mechanisms:

Vaporization of tissue (photothermal effect) Ejection of debries (photoacustic effect) Direct breakdown of molecules (photochimical dissociation

 AHEAD OF PRINT
 CURRENT ISSUE
 ARCHIVE
 SUPPLEME

 Image: Previous Article | Vol 70. Num 02. February 2017 | Next article
 Image: Previous Article | Vol 70. Num 02. February 2017 | Next article
 Image: Previous Article | Vol 70. Num 02. February 2017 | Next article

Rev Esp Cardiol. 2017;70:116 - Vol. 70 Num.02 DOI: 10

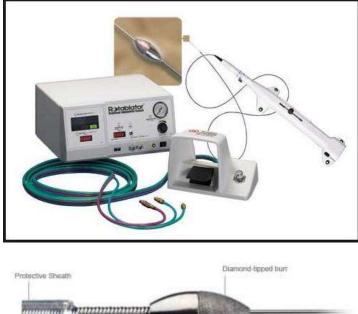
Effects of Excimer Laser Coronary Atherectomy A1 Assessed by OCT

Daniele Gemma * 2 , Guillermo Galeote García * , Ángel Sánchez-Recalde *

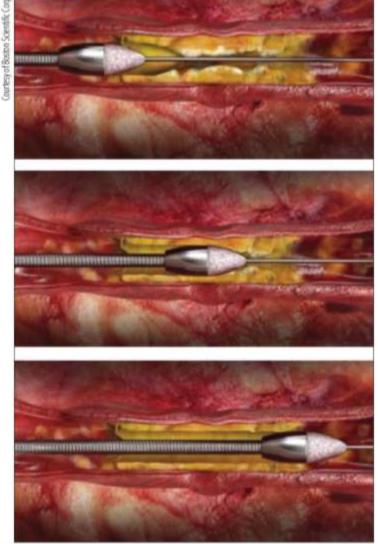
* Unidad de Hemodinámica y Cardiología Intervencionista, Hospital Universitario La Paz, Madrie

Proposed indications :

- Long lesions
- Moderately calcified lesions
- Undilatable lesions



Rev Esp Cardiol. 2017;70:116



Rotational Atherectomy (Rotablator)

Driveshaft Smooth proximal surface

Mechanism of action

- Differential cutting : cuts more rigid ,inelastic material
- Orthogonal friction displacment : reduces friction between vessel wall and entering device

Technical considerations

- Burr /artery ratio 0.5-0.6
- Rotational speed up to 200.000 rpm
- Lower rpm 140.000 ; less heat generation and platlet activation
- Runs should be limited to 20 seconds
- Deceleration of > 5000 rpm should be avoided

OPERATOR TECHNIQUE

- Gradual burr advancement using a pecking motion
- Short ablation runs of 15 30 sec
- Avoidance of decelerations > 5,000 rpm
- Keep under control distal edge of rotawire
- Avoidance of pushing in angled lesions
- If not crossing , try with lower burr size
- Final polishing run

• Indications

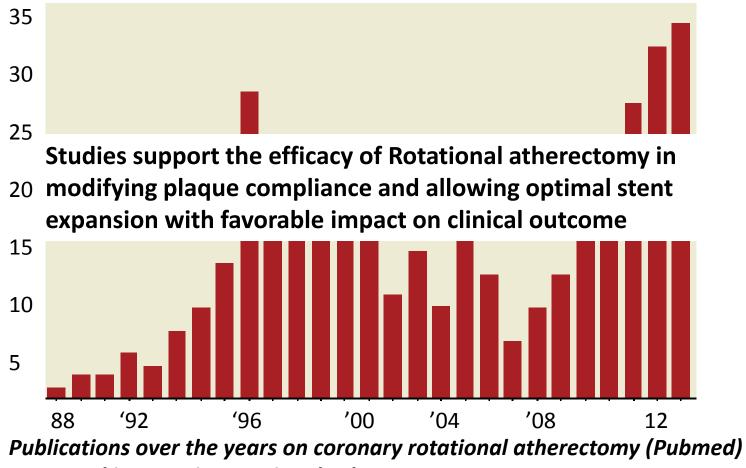
Moderate/ severe calcified lesionUndilatable lesion

- Contraindications :
 - Dissections
 - •Angulated lesions > 70° 90°
 - Thrombus cantaining lesionsSVG
 - •Acute Ml

Copmplications

- Slow flow , no reflow
- Non Q MI
- Coronary perforation
- Dissection
- Bradycardia & AV block
- Vasospasm

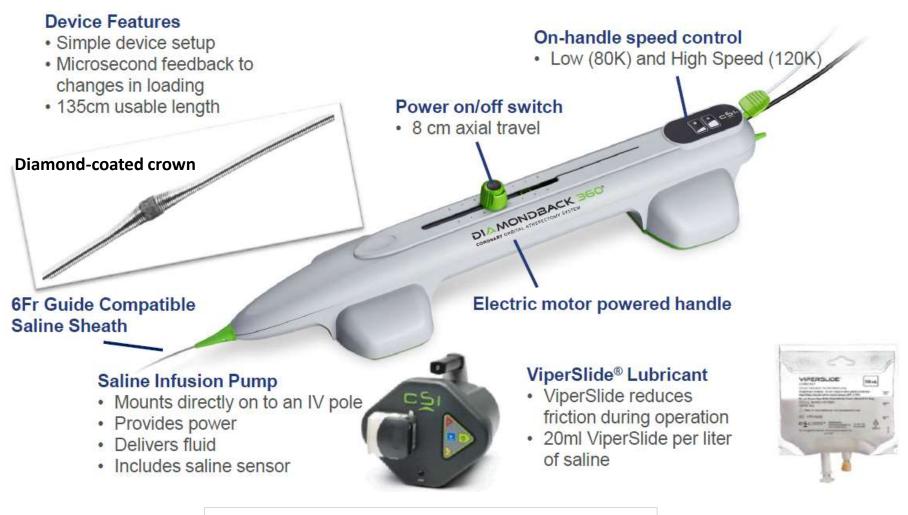
Rotablator Failure :


- Burr enrapment
- Burr detushment
- Burr Stalling
- Rotawire fracture

ROTAPRO™ Rotational Atherectomy System Currently in Development **Design Goals:** 160 Easier to learn & use (no foot pedal) Easier to set up (consolidated cables) 0 Allows single operator use 0:01 0.0 Dynaglide activation button ROTAPRO ROTAL Burr activation button on advancer knob Dynaglide mode ON / OFF button Brake release 60 button ROTAPRO

CARDIOVASCULAR RESEARCE

COLUMBIA UNIVERSITY MEDICAL CENTER UNIVERSITY CENTER Devices of the sector of the sect

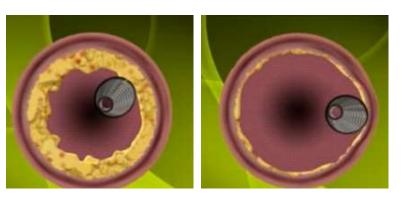

Renewed interest in Rotational Atherectomy

Barbato, et al. "European expert consensus on rotational atherectomy." EuroIntervention 2015;11:30-36.

RISUITAT DEFICE OF TISUITATE (0,29 Second) PDF child Alasia conversion of the Wire [ViperWire™] PPR Cuital Atherectomy Guide Wire [ViperWire™] PDF cuital Atherectomy Guide Wire [ViperWire™]

Tools for Severe Coronary Calcification

Diamond Back 360[®] Orbital Atherectomy System


Works on Specific guidewire (Viper-Wire™)

Orbital Atherectomy : mechanism of action

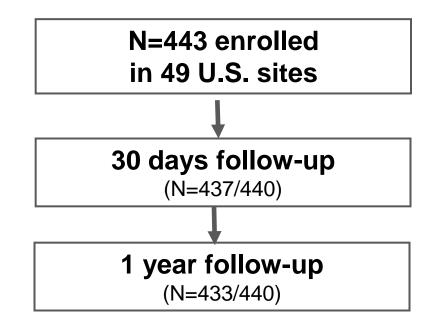
Differential Orbital Sanding

Crown sands the hard component of the plaque

Soft componenent (plaque / tissue) flex away from the crown

Orbital Mechanism :

- Increased speed = increased centrifugal force
- Greater centrifugal force = larger orbital diameter
- Different vessel diameters can be treated based on orbiting speed


 $CF = \frac{Mass \ x \ Rotational \ speed2}{Radius \ of \ the \ orbit}$

Available for clinical use only in USA and Japan

ORBIT II Study Design

- To evaluate safety and efficacy of the Diamondback Coronary OAS to prepare *de novo*, severely calcified coronary lesions for enabling stent placement
 - Prospective, multi-center trial
 - Single arm FDA recommendation as there are no FDA-approved percutaneous treatments for patients with severely calcified lesions.

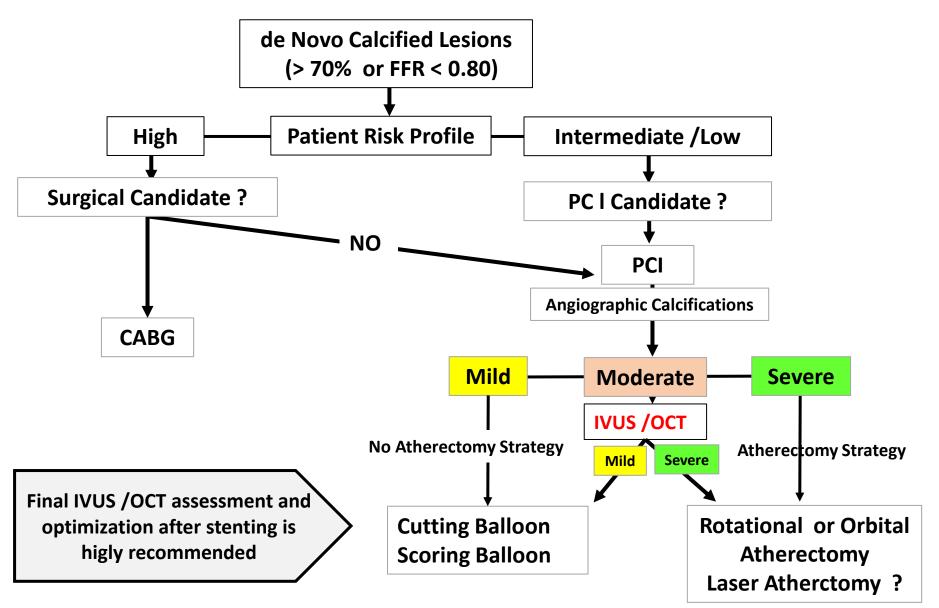
ORBIT II Study Objective 1 EFFICACY

Demonstrate that the OAS successfully facilitates stent deployment in severely calcified coronary lesions

Successful Stent delivered:97.7%*Less than 50% residual stenosis:98.6%

9-12 Months MACE in Patients with Severe Coronary Calcium

	Severe	Moderate	e/severe	Severe	Severe
40%	ORBIT II <u>9-months</u> OAS+BMS/DES ¹	ROTAXUS <u>9</u> -months RA+DES ²	ROTAXUS <u>9</u> -months DES alone ²	ORBIT II <u>1</u> -year OAS+BMS/DES ¹	ACUITY/HORIZONS <u>1</u> -year All PCl ³
35%					
30%			28.3%		
25%		24.2%			
20%				4.6.40/	19.9%
15%	14.8%			16.4%	
10%					
5%					
0%					


1. Chambers, 2014, Data on file at CSI, ORBIT II, 100% severely calcified lesions

2. Abdel-Wahab 2013, EuroPCR, ROTAXU8, -50%/50% moderate/severely calcified lesions, and Abdel- Wahab, 2013 JACC:CI

3. Genereux, 2013, TCT, ACUITY/HORIZONS Subanalysis, <u>100% severely</u> calcified lesions

Algorythm for Calcified Coronary Lesions Management

